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Abstract

We analyse in a systematic way the (non-) compactn-dimensional Einstein–Weyl spaces equipped
with a cohomogeneity-one metric. In that context, with no compactness hypothesis for the manifold
on which lives the Einstein–Weyl structure, we prove that, as soon as the (n−1)-dimensional space
is a homogeneous reductive Riemannian space with a unimodular group of left-acting isometriesG:

• there exists a Gauduchon gauge such that the Weyl-form is co-closed and its dual is a Killing
vector for the metric;

• in that gauge, a simple constraint on the conformal scalar curvature holds;

• a non-exact Einstein–Weyl structure may exist only if the (n − 1)-dimensional homogeneous
space G/H contains a non-trivial subgroup H ′ that commutes with the isotropy subgroup H ;

• the extra isometry due to this Killing vector corresponds to the right-action of one of the generators
of the algebra of the subgroup H ′.

The first two results are well known when the Einstein–Weyl structure lives on a compact
manifold, but our analysis gives the first hints on the enlargement of the symmetry due to the
Einstein–Weyl constraint.

We also prove that the subclass with G compact, a one-dimensional subgroup H ′ and the (n −
2)-dimensional space G/(H × H ′) being an arbitrary compact symmetric Kähler coset space,
corresponds to n-dimensional Riemannian locally conformally Kähler metrics. The explicit family
of structures of cohomogeneity-one under SU(n/2) being, thanks to our results, invariant under
U(1)× SU(n/2), it coincides with the one first studied by Madsen; our analysis allows us to prove
most of his conjectures. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

For the last 30 years, gauge invariance has been the guiding idea in the construction of
an unified theory of all interactions. In the genesis of the “gauge principle”, the name
of the mathematician Hermann Weyl should be recognised by physicists (the book of
O’Raifeartaigh [1] offers a very instructive historical review of that subject). The same
mathematician has also defined “Weyl geometry” which emphasises the role of conformal
invariance: it describes not a given metric g in the target space together with a gauge field
γµ (or a one-form γ = γµ dxµ), but an equivalence class [g], through a conformal trans-
formation of the distance g → ef g and a related gauge transformation of the gauge field
γ → γ +df . So, even ifH . Weyl’s original hope [1–4] for an unified theory of electromag-
netism and gravity failed, it is useful to pursue some analyses of his geometry (see some
recent efforts in the same spirit in [5–7]). On the other hand, Einstein manifolds enter the
game with Einstein gravity and also, since 1969 [8–10], in the framework of the quantisation
of non-linear σ models: indeed, they offer multiplicatively renormalisable two-dimensional
theories. Note that special Einstein manifolds are the Ricci-flat ones, e.g. the Calabi–Yau
manifolds, the building block of string theory. It is then natural to export such Einstein
constraints on a Weyl space, i.e. to study Einstein–Weyl geometry (for a recent review, see
[11] and references therein).

Then, Einstein–Weyl geometry — in particular in three- and four-dimensions — has raised
some interest in the last years, mainly among mathematicians, but also for physicists
when three-dimensional Einstein–Weyl geometries were used to construct four-
dimensional non-linear σ models with (4, 0) or (4, 4) supersymmetry [12,13], or when
Tod [14] exhibited the relationship between a particular Einstein–Weyl geometry with-
out torsion (the four-dimensional self-dual Einstein–Weyl geometry studied by Pedersen
and Swann [15]) and local heterotic geometry (i.e. the Riemannian geometry with torsion
and three complex structures, associated with (4, 0) supersymmetric non-linear σ models
[16–23]).

In [24,25], we analysed in a systematic way, first from a local point of view, then with
completeness and compactness restrictions, the four-dimensional Einstein–Weyl structures
equipped with a Bianchi metric. This allows us to illustrate the general results obtained by
mathematicians around Gauduchon, Tod, Pedersen, Poon and Swann [15,26–32] and, e.g. to
show that Einstein–Weyl structures equipped with a Bianchi metric are either conformally
Einstein or conformally Kähler [24]. The aim of the present work is twofold.

• Extend our four-dimensional study to n dimensions, still in a local approach and, in
the spirit of four-dimensional separation of “time” and “space”, we restrict ourselves
to cohomogeneity-one manifolds. In particular, we show that the main results proved
by mathematicians for compact Einstein–Weyl structures hold true for (non-) compact
cohomogeneity-one structures as soon as the (n − 1)-dimensional principal orbit is a
homogeneous reductive Riemannian space with a unimodular group of isometries.
◦ Existence of a Gauduchon [26] gauge such that the Weyl-form γ is co-closed, and

such that the dual of the Weyl [28] form is a Killing vector for the metric.
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◦ Still in that gauge, nice constraint on the conformal scalar curvature [27,29,30,33]:

SD = −n(n− 4)

4
(γνγ

ν)+ constant.

• Get a better understanding of the symmetry that corresponds to the upper mentioned
Killing vector.
◦ One of our main results is a no-go theorem. If the (n − 1)-dimensional Riemannian

homogeneous space is the right coset spaceG/H , a non-exact (γ 	= df )Einstein–Weyl
space exists only if there exists a non-empty subgroup H ′ of G such that H ∩ H ′ =
∅, [H,H ′] = 0.

◦ We also prove that this isometry corresponds to the right-action of one of the gen-
erators of the subgroup H ′, and so that the symmetry of the solution is bigger than
that of the Einstein–Weyl equations: it is enlarged from G acting on the left (GL) to
GL×GL(1,R). This unusual phenomenon, a kind of spontaneous generation of sym-
metry, results from the Einstein–Weyl constraints: note that such a phenomena will be
helpful in the quantisation of the theory, as a Ward identity is more manageable than
a geometrical constraint such as the Einstein–Weyl property.

The paper is organised as follows: in Section 2, we first recall the geometrical setting of
Einstein–Weyl geometry and cohomogeneity-one metrics; then we emphasise some prop-
erties of left and right group action on coset spaces and finally we give the expressions
of geometrical quantities, separating the n-dimensional metric g into a “time part” and a
(n − 1)-dimensional “space part”. In Section 3, focussing on unimodular groups G, we
exhibit a specific Gauduchon gauge and express the Einstein–Weyl equations in that gauge.
In full generality, we are then able to prove the announced results (Lemma 1 and Theorem
1). We end the section by a characterisation of some special families of solutions where only
two functions are involved in the expression of the Einstein–Weyl structure. In particular,
we prove that for the whole family built on an (n − 2)-dimensional compact symmet-
ric Kähler space, the corresponding n-dimensional metric is locally conformally Kähler
(Theorem 2).

Section 4 is then devoted to the family of SU(m) left-invariant structures in n = 2m
dimensions. Thanks to the results of the previous section, the isometry group is enlarged
to U(1) × SU(m)L. As in the four-dimensional case, they are conformally Kähler and we
obtain the explicit expression of the structure: it depends on three arbitrary parameters, up
to a homothety. As in [25], we use the terminology of Gibbons and Hawking [34,35] on
nuts and bolts to search for n-dimensional regular and complete solutions and show that, up
to an arbitrary homothetic factor Γ , (m + 2) one-parameter families of solutions exist. In
particular, we prove that a bolt(p)–bolt(p) solution exists iff the twistp is 1, 2, . . . , (m−1).
This proves one of Madsen’s [31] conjectures.

The same work is done in Section 5 for S1 × SO(n − 1) left-invariant structures. We
obtain the explicit expression of the structure depending on three arbitrary parameters, up
to a homothety. Here again, we look for n-dimensional regular and complete solutions and
show that, up to an arbitrary homothetic factor Γ , only three one-parameter families of
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non-conformally Einstein solutions exist, all with an everywhere positive conformal scalar
curvature.

Some concluding remarks are offered in Section 6. Appendix A describes the splitting
of n-dimensional geometric quantities to (n−1)-dimensional ones for cohomogeneity-one
metrics and, in Appendix B, we relate two of our families of solutions of opposite orienta-
tions.

2. Einstein–Weyl structures and cohomogeneity-one metrics: the geometrical setting

2.1. Weyl space

A Weyl space [11,15] is a conformal manifold with a torsion-free connection D and a
one-form γ such that for each representative metric g in a conformal class [g],

Dµgνρ = γµgνρ. (1)

A different choice of representative metric g → g̃ = ef g is accompanied by a change in
γ : γ → γ̃ = γ + df . Conversely, if the one-form γ is exact, the metric g is conformally
equivalent to a Riemannian metric g̃: Dµg̃νρ = 0. In that case, we shall speak of an exact
Weyl structure.

The Ricci tensor associated to the Weyl connection D is defined by

[Dµ,Dν]vρ = R(D)ρ
λ,µν v

λ, R(D)
µν = R(D)ρ

µ,ρν . (2)

R(D)
µν is related to R(∇)

µν , the Ricci tensor associated to the Levi-Civita connection:

R(D)
µν =R(∇)

µν + 1
2 (n− 1)∇νγµ − 1

2∇µγν + 1
4 (n− 2)γµγν

+ 1
2gµν[∇ργ ρ − 1

2 (n− 2)γργ
ρ]. (3)

Using (2) and (3), a nice relation [33] constrains the conformally invariant two-form dγ
which we call the field strength 1

dγ = 1
2Fµν dxµ ∧ dxν,

gµλgνρDλDρFµν = − 1
4 (n− 4)FµνFµν ⇔ DµDνF

µν = − 1
4 nFµνFµν. (4)

2.2. The Gauduchon gauge

In the compact case, up to a homothety there exists a unique metric g in the conformal
class such that γ is co-closed:

∇λγ λ = 0.

(The Lorentz gauge for electromagnetism.)

1 In the original point of view of Weyl, γµ is the electromagnetic field and in [33] the term Faraday’s two-form
is used for dγ .
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2.3. Einstein–Weyl spaces

Einstein–Weyl spaces are Weyl structures defined by 2

R(D)
µν =

SD

n
gµν ⇔ R(∇)

µν +
n− 2

2

[
∇(µγν) + 1

2
γµγν

]
= Λgµν,

Λ= SD

n
− 1

2

[
∇λγ λ − n− 2

2
γλγ

λ

]
. (5)

Note that for an exact Einstein–Weyl structure, γ = df , the representative metric is con-
formally Einstein. Note also that the conformal scalar curvature is related to the scalar
curvature through

SD = gµνR(D)
µν = nΛ+ 1

2n[∇λγ λ − 1
2 (n− 2)γλγ

λ]

=R(∇) + (n− 1)[∇λγ λ − 1
4 (n− 2)γλγ

λ]. (6)

For any Einstein–Weyl structure, another nice relation may be derived using the Bianchi
identity

−∇ν
[
SD

n
+ n− 4

4
γλγ

λ

]
+
(
∇ν − 1

2
γν

)
(∇λγ λ) = (∇λ + γ λ)(∇(λγν)). (7)

Notice that in a Gauduchon gauge and when the manifold is compact, 3 contraction of (7)
with γ ν , followed by an integration on the manifold, ensures that the vector γλ, dual of the
Weyl-form γ , is a Killing vector [28].

A related relation is [27,29,33]

(∇ν + γν)
SD

n
+ 1

2
gλµDλFµν = 0. (8)

2.4. Cohomogeneity-one metrics

Cohomogeneity-one metrics are real n-dimensional metrics with an isometry group G

whose generic orbits are (n − 1) surfaces (we also restrict ourselves to effectively acting
isometries, i.e. the isotropy subgroup H contains no non-trivial normal subgroups, dis-
crete or not, of G [36]). This generalises to n-dimensions the homogeneity property of
three-dimensional ordinary space in gravity and the n-dimensional distance is then split as

ds2 = gµν dxµ dxν = (dT )2 + (dτ)2 = (dT )2 + gαβ dxα dxβ,

µ, ν = (0, α), (0, β), (9)

where, given some “proper time” T , the T -fixed (n − 1) space will be a homogeneous
space, i.e. a coset space G/H with G a connected group and H a closed subgroup. As

2 [a, b] and (a, b), respectively, mean antisymmetrisation and symmetrisation with respect to the indices a, b:
v(awb) = 1

2 [vawb + vbwa], etc.
3 At least, as soon as integration by parts on the manifold is possible.
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we consider only Riemannian manifolds, the isotropy subgroup H , being a subgroup of
some orthogonal group, is compact [37]. The compactness of H ensures that G/H is a
reductive homogeneous space [38], i.e. G and H denoting the corresponding Lie algebras,
an invariant, non-degenerate, bilinear quadratic form on G exists and G may be decomposed
according to

G = H⊕M,

whereM is Ad(H) invariant. So the commutation relations write

[ha, hb] = f c
abhc, ha ∈ H, a, b, c = 1, 2, . . . , L, dimH = L,

[ha,Wi] = f
j
aiWj, Wi ∈M, i, j, k = 1, 2, . . . , (n− 1),

[Wi,Wj ] = f k
ijWj + f c

ijhc. (10)

A parameterisation of the (n− 1)-homogeneous space is conveniently done through (right)
equivalence classes in G/H in one to one correspondence with the considered point x on
the (n− 1) surface

[L(x)] ∈ G, L(x) ∼ L′(x)⇔ ∃h ∈ H, L(x) = L′(x) · h.

The left-action of an arbitrary g0 writes

[L(x′)] = [g0 · L(x)] ⇔ L(x′) = g0 · L(x) · h−1[x, g0],

note that a left h0 transformation, given by L(x′) = h0 · L(x) · h−1
0 , acts linearly on x.

The Lie algebra valued Maurer–Cartan one-form

M = L−1(x) dL(x)

defines the one-forms ei(x) and ωa(x) by

M = ei(x)Wi + ωa(x)ha, (11)

in particular, the one-forms ei(x) = eiα(x) dxα transform, under an arbitrary transformation
of G, in an “homogeneous” way, according to

ei(x)Wi → ei(x′)Wi = h[x, g0] · ei(x)Wi · h−1[x, g0].

The infinitesimal version writes

δg0e
i(x) = −εa(x, g0)f

i
aje

j ,

with h[x, g0] = exp[−εa(x, g0)ha] and εa(x, h0) ≡ εa(h0). (12)

Then, the most general G-invariant distance on the (n − 1)-dimensional space may be
written as

(dτ)2 = hije
i(x)ej (x) ≡ hije

i
α(x)e

j
β(x) dxα dxβ, (13)
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where the symmetric, positive definite (n− 1)× (n− 1) tensor hij has to be invariant under
H , i.e.

f k
aihkj + f k

ajhik = 0, (14)

and the eiα(x) are some vielbeins. Let ηij be independent solutions of (14): they correspond
to irreducible orthogonal representations (irreps) of the compact group H and may be used
to write the H -invariant 2-tensor hij in block-diagonal form

dτ 2 =
∑

η=irreps of H

hηηije
i(x)ej (x), (15)

where ηij is a positive definite symmetric matrix in the irreducible component labelled by η,
and the hη’s are some arbitrary positive parameters. The cohomogeneity-one requirement
means that at any “proper time” T , the (n − 1)-dimensional distance takes the form (13)
and (15):

(ds)2 = (dT )2 + (dτ)2 = (dT )2 + hij[T ]ei(x)ej (x)

= (dT )2 +
∑

η=irreps of H

hη[T ]ηije
i(x)ej (x).

Notice that there is no loss of generality in choosing the metric element g00 = 1 as this
corresponds to a choice of “proper time”T . The general analysis of Einstein–Weyl equations
will use G-invariant cohomogeneity-one Weyl structure written as

ds2 = dT 2 + hij(T )e
iej , γ = γ0(T ) dT + γi(T )e

i (16)

with (hij is the matrix inverse of hij)

f k
aihkj[T ]+ f k

ajhik[T ] = 0, (17a)

f
j
aiγj (T ) = 0

(17a)⇔ f
j
aiγ

i(T ) = 0, γ i = hijγj . (17b)

Some inverse vielbeins Eα
i may be defined by

dxα = Eα
i e

i ⇒ eiαE
α
j = δij , eiαE

β
i = δβα . (18)

The Maurer–Cartan consistency condition dM +M ∧M = 0 gives

dei + 1
2f

i
jke

j ∧ ek + f i
akω

a ∧ ek = 0 ⇒ ∇[βe
i
α] = 1

2f
i
jke

j
αe

k
β + f i

akω
a
[αe

k
β],

dωa + 1
2f

a
jke

j ∧ ek + 1
2f

a
bcω

b ∧ ωc = 0 ⇒ ∇[βω
a
α] = 1

2f
a
jke

j
αe

k
β + 1

2f
a
bcω

b
αω

c
β. (19)

Moreover (see Appendix A), using Eqs. (14) and (19), one obtains for the symmetrised
covariant derivative

∇(βeiα) = −hijf k
j (lhm)ke

l
αe

m
β − f i

amω
a
(αe

m
β). (20)
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2.5. The right-action of G

For further use, note that a right-action of G on right equivalent classes in G/H can be
defined for those elements h′ of G (with h′ not in H ) that commute with all elements of
H . 4 They form a subgroup H ′ of G. The corresponding Lie algebra elements belong to
(G−H) and generate a subalgebraH′; the Lie algebra of G may be decomposed according
to

G = H⊕H′ ⊕M,

whereM is the complement ofH⊕H′. The commutation relations are now

[ha, hb] = f c
abhc, ha ∈ H, a, b, c = 1, 2, . . . , L, dimH = L,

[h′u, h
′
v] = f w

uvh
′
w, h′u ∈ H′, u, v,w = 1, 2, . . . , L′, dimH ′ = L′,

[ha, h
′
u] = 0, [ha, W̃i] = f

j
aiW̃j , W̃i ∈M, i, j, k = 1, 2, . . . , (n− 1− L′),

[h′u, W̃i] = f
j
uiW̃j , [W̃i, W̃j ] = f k

ij W̃j + f c
ijhc + f u

ij h
′
u. (21)

In that case, note that this right-action of h′ on right equivalence classes is simply defined
by

[L̃(x′)] = [L̃(x) · h′0] = [L̃(x)] · h′0.
Moreover, the Maurer–Cartan one-form M should now be decomposed as

M = ẽi (x)W̃i + yu(x)h′u + ω̃a(x)ha. (22)

On one hand, note that the one-forms yu(x) are left-invariant and the G-invariant cohomo-
geneity-one Weyl structure may be written as 5

ds2 = dT 2 + h̃ij(T )ẽ
i ẽj + h̃uv(T )y

uyv, γ = γ0(T ) dT + γ̃u(T )y
u (23)

with

f k
aih̃kj[T ]+ f k

ajh̃ik[T ] = 0. (24)

On the other hand, under a right-action, the one-forms ẽi (x) and yu(x) transform linearly,
and the ωa(x) are invariant

δh′ ẽ
i (x) = −εuf i

ujẽ
j (x), δh′y

v(x) = −εuf v
uwy

w(x),

then, the Weyl structure (23) and (24) remains of the same form (with a tensor h̃ij[T ] changed

4 Of course, a right-action of all elements ofG that normaliseH may always be defined. However, in the analysis
of the isometries of Einstein–Weyl structures, only those elements that commute with H will play a role as the
corresponding one-forms are left-invariant.

5 Using irreducible representations of H (see Section 2.4), h̃ij could be written as in (15); moreover, h̃uv is an
arbitrary positive definite symmetric matrix.
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into another H -invariant one, thanks to Jacobi identities) according to

h̃′ij = h̃ij + εu[f k
uih̃kj + f k

ujh̃ik], h̃′uv = h̃uv + εw[f u′
wuh̃u′v + f u′

wvh̃uu′ ],

γ̃ ′u = γ̃u + εvf w
vuγ̃w. (25)

(A discussion of non-linear σ models built on homogeneous spaces with such aH ′ subgroup
may be found in [39, Sections 3.1 and 3.2]).

2.6. The n-dimensional geometric quantities

The n-dimensional geometric quantities may now be expressed as functions of the (n−
1)-dimensional ones (Appendix A).

First, thanks to previous results (19) and (20),R(∇)
µν may be expressed as (e.g. see [24,40])

R
(∇)
00 = −1

2

d

dT

(
h′

h

)
− 1

4
K
j
i K

i
j , K

j
i =

dhik

dT
hkj, h = det[hij], h

′ = dh

dT
,

R
(∇)
0α = 1

2
ekα[f i

kj − δikf
m
jm]Kj

i ,

R
(∇)
αβ = σ iασ

j
β

[
R
(n−1)
ij − 1

2

dKij

dT
+ 1

2
Kk
i Kkj − h′

4h
Kij

]
, Kij = Kk

i hkj =
dhij

dT
, etc.

(26)

where R(n−1)
ij is the (n− 1)-dimensional Ricci tensor associated to the homogeneous space

Levi-Civita connection, in the vielbein basis ei , may be expressed as a function of the metric
hij and of the structure constants of the group [40,41].

Second, the Bianchi identity splits [24]

f i
jkR

(n−1)j
i + f i

jiR
(n−1)j
k = 0, k = 1, 2, . . . , n− 1 [40,Eqs. (116, 25)], (27)

hij d

dT
R
(n−1)
ij ≡ dR(n−1)

dT
+K

j
i R

(n−1)i
j = 2(∇αEα

i )R
i
0 (28)

with

∇αEα
i = f i

ji + (ωaβE
β
l )f

l
ai, Ri

0 = hijEα
j R

(∇)
0α , R(n−1) = R

(n−1)
ij hij.

We do not find the nice equation (28) in the standard textbooks on gravity (even for ordinary
four-dimensional space–time with a three-dimensional group of isometries, i.e. no subgroup
H , where ∇αEα

i simplifies to f i
ji).

Third, one may also obtain using (17a), (17b), (19) and (20)

∇(0γ0) = dγ0

dT
, ∇(0γα) = 1

2
eiαhij

dγ j

dT
, γ i = hijγj ,

∇(αγβ) = eiαe
j
β

[
1

2
γ0Kij + hl(if

l
j)kγ

k

]
, ∇µγ µ = dγ0

dT
+ h′

2h
γ0 + γ if

j
ji . (29)
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Note that one may always choose a representative in the conformal class [g] such that
γ0(T ) ≡ 0. Then, as soon as f j

ij = 0, i = 1, 2, . . . , (n − 1), 6 this choice gives a special
family of Gauduchon gauges [24], and, in the rest of this study, we suppose that this condition
is fulfilled.

3. The Einstein–Weyl equations in the special gauge γ0= 0

3.1. General results

For cohomogeneity-one metrics, the Einstein–Weyl equations (5) may be split and written
in the special gauge γ0 = 0 (let us recall that we consider algebras G with f j

ij = 0):

Λ = −1

2

d

dT

(
h′

h

)
− 1

4
K
j
i K

i
j , (30)

0 = 1

2
f i

kjK
j
i +

n− 2

4
hki

dγ i

dT
, (31)

hijΛ = R
(n−1)
ij −1

2

dKij

dT
+ 1

2
Kk
i Kkj − h′

4h
Kij+n− 2

2
γ khl(if

l
j)k +

n− 2

4
γiγj .

(32)

On the one hand, the use of relations (28), (30) and (31) in the equations obtained through
contraction of (32) with hij and K ij, gives

d

dT

[
SD + n(n− 4)

4
γiγ

i

]
= −n

2

dγ i

dT

[
∇αEα

i −
n− 4

2
γi

]
. (33)

On the other hand, Eq. (7) splits into

d

dT

[
SD + n(n− 4)

4
γiγ

i

]
= −n

2

dγ i

dT
[∇αEα

i + γi], (34)

d

dT

[
hij

dγ j

dT

]
= γ j [f k

ji γk +Xij + ∇αEα
k (Dj )

k
i ], (35)

where the traceless matrices Di have for matrix elements (Di)
n
m ≡ f n

im+f s
irhsmh

rn and Xij

is a symmetric, non-negative matrix

Xij = f n
im[f m

jn + f s
jrhnsh

mr] = 2f n
i(mhs)nf

s
jrh

rm = 1
2 (Di)

n
m(Dj )

m
n .

Indeed, V being any eigenvector of the symmetric matrix X with eigenvalue λ,∑
j

Xij(V )j = λ(V )i,

6 As f a
ia = 0 and (thanks to the compactness ofH ) f j

aj+f b
ab = 0, our condition reduces itself to the unimodularity

of the adjoint action of G. This also means that the measure is G-invariant.
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one can choose a diagonal basis for the positive definite metric hij and compute

λ
∑
i

(V )i(V )i =
∑
i,j

Xij(V )i(V )j

= 1

2

∑
s,t

hsshtt

[∑
i

(V )i(Di)

]t
s


∑

j

(V )j (Dj )



t

s

≥ 0.

As a consequence, the eigenvalues of the matrix X are non-negative.
Moreover, the existence of a zero eigenvalue requires an eigenvector V satisfying[∑

i

(V )i(Di)

]t
s

= 0 ⇔
∑
i

(V )if
s
i(mhn)s = 0.

Eqs. (33) and (34) give (as soon as n ≥ 3)

γi
dγ i

dT
= 0. (36)

Then, contraction of (35) with γ i using (17a) and (17b) and ∇αEα
i = (ωaβE

β
l )f

l
ai leads to

dγ i

dT
hij

dγ j

dT
+ γ iXijγ

j = 0, (37)

which enforces

dγ i

dT
= 0 ⇔ γ i = Γ i constants constrained by (17a) and (17b) : Γ if

j
ai = 0. (38)

As a consequence, the operator

ZΓ = Γ iWi (39)

commutes with all ha .
Then, a non-exact 7 Einstein–Weyl structure, i.e. a solution with at least one non-vanishing

H -invariant (n− 1) vector Γ i , requires that the algebra (G −H) contain some h′ element
(see Section 2.5) and that there exist at least one zero eigenvalue for X:

Γ i(Di)
s
mhns = Γ if s

i(mhn)s = 0. (40)

Then we have the following lemma.

Lemma 1. Given a homogeneous (n − 1)-dimensional space G/H, the Lie algebra of G
satisfying

∑
j f

j
ij = 0, i, j = 1, . . . , n − 1, an n-dimensional non-exact Einstein–Weyl

structure of cohomogeneity-one under the left-action of G may exist only if at least one
generator in G −H commutes with all the generators ofH.

7 An exact Einstein–Weyl structure with a non-vanishing γ also requires the existence of some h′ element in the
algebra (G −H), but in that work, we consider mainly non-exact Einstein–Weyl structures.
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In particular, as the structure constants of a symmetric coset space satisfy f k
ij = 0, one

gets the following corollary.

Corollary 1. Any n-dimensional Einstein–Weyl structure of cohomogeneity-one under the
action of a group G and whose principal orbit G/H is a symmetric space without flat factors,
can only be an exact Einstein–Weyl structure.

As a particular case, note that G = SO(n) being the maximal isometry group of an
(n − 1)-dimensional homogeneous space [42], in that situation G/H will be the sphere
Sn−1; but, an SO(n−1)-invariant Weyl-form γ reduces to γ0 dT . So, the sole Weyl structure
is an exact one, in agreement with Corollary 1.

Thanks to the discussion in Section 2.5, a right-action of ZΓ may then be defined. Under
an infinitesimal right group transformation ZR = exp[εZΓ ], any representative of a right
equivalence class in G/H transforms according to

L(x′) = L(x) · ZR · h−1(x, Γ ),

and, with h(x, Γ ) = exp[−εa(x, Γ )ha], the one-forms ei(x) and ωa(x), still defined
through (11), transform according to

δZRei(x) = −[εb(x, Γ )f i
bj + εΓ kf i

kj]e
j (x),

δZRωa(x) = −[εb(x, Γ )f a
bcω

c(x)+ εΓ kf a
kje

j (x)]+ dεa(x, Γ ). (41)

The “gauge” function εa(x, Γ ) can be expressed as

εa(x, Γ ) = εΓ iωaα(x)E
α
i (x). (42)

Indeed,

L−1(x) · [L(x + δx)− L(x)] = ZR · exp[εa(x, Γ )ha]− 1 � εΓ kWk + εa(x, Γ )ha,

and, when one uses the Maurer–Cartan one-form M(x), the left-hand side expression
writes

L−1(x) · [L(x + δx)− L(x)] � [eiα(x)Wi + ωaα(x)ha]δxα;

identification allows the elimination of δxα and gives the announced result (42).
Using (17a), (17b) and (40), the distance and Weyl-form are readily checked to be in-

variant, which shows that the symmetry group of the Einstein–Weyl structure is enlarged
from GL to GL × GL(1,R), as there exists a combination of the left- and right-action of
ZΓ which acts linearly [39].

Let us now make contact with the general results obtained for a compact n-dimensional
Einstein–Weyl structure in the (unique) Gauduchon gauge. First, Eq. (34) gives, in agree-
ment with [27,30,33]

SD + 1
4n(n− 4)Γ ihij(T )Γ

i = constant, (43)
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second, relations (29) and (40) lead to ∇(µγν) = 0, and enforce γ µ to be a Killing vector
for the metric, in agreement with [28], the corresponding isometry generator being

Z̃Γ = Γ iEα
i

∂

∂xα
. (44)

Note that ∇(αγβ) = 0 also enforces γ α to be a Killing vector on T -fixed surfaces. Thanks
to Eq. (19), Z̃Γ acts on one-forms ei(x) and ωa(x) according to

Z̃Γ e
i = −[Γ mf i

mj + (Γ mEα
mω

b
α)f

i
bj]e

j ,

Z̃Γ ω
a = −[(Γ mEα

mω
b
α)f

a
bcω

c + Γ mf a
kje

j ]+ d(Γ mEα
mω

a
α), (45)

and leaves the Weyl-form invariant as

Z̃Γ [Γ jhije
i] = Γ jΓ m[hijf

i
mn + Eα

mω
a
αhijf

i
an]en = −Γ jΓ mhinf

i
mje

n = 0.

The identification exp[εZ̃Γ ] = ZR immediately results when one compares Eqs. (41), (42)
and (45).

So, we have, with the notations of Eqs. (10), (11) and (16), the following theorem.

Theorem 1. Given a reductive homogeneous (n−1)-dimensional space G/H, where H is a
closed subgroup of the connected group G and G is not necessarily compact but its regular
representation is supposed to be unimodular.

1. An n-dimensional non-exact Einstein–Weyl structure of cohomogeneity-one under the
left-action of G may exist only if some generators of (G − H) commute with all the
generators ofH (letH′ be the subalgebra of such generators, and L′ its dimension).

2. h′0, one of the generators of H′, being chosen, in the particular Gauduchon gauge
obtained for γ0 = 0 the isometry group contains an extra GL(1,R), corresponding to a
right-action of h′0.

3. In that gauge, the Weyl-form is dual to the Killing vector of the chosen h′0; it is then given

by γ = Γ i
0h

0
ij(T )e

j , where Γ i
0 are constant parameters constrained by Γ i

0f
j
ai = 0, and

the distance is written as

(ds)2 = (dT )2 + h0
ij[T ]eiej .

4. The GL(1,R)×H -invariant metric h0
ij[T ] is constrained by f k

a(ihj)k = Γ i
0f

k
i(mhn)k = 0

and by the equations

Λ′ = −1

2
Γ iΓ jhij − 1

2

d

dT

(
h′

h

)
− 1

4
K
j
i K

i
j = constant, f k

ijK
j
k = 0,

R
(n−1)
ij = Λ′hij + 1

2

dKij

dT
− 1

2
Kk
i Kkj + h′

4h
Kij

+1

2
Γ m

0 Γ n
0

[
hmnhij − n− 2

2
hmihnj

]
. (46)
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5. Still in that gauge, the conformal scalar curvature satisfies

SD + 1
4n(n− 4)Γ i

0h
0
ij(T )Γ

j

0 = nΛ′. (47)

6. As explained in Section 2.5, the (L′ − 1) extra generators of the subgroup H ′ offer right
transformations from one solution with some {hij[T ], γi[T ]} to another solution: al-
though not conformally equivalent, these solutions are related and should be considered
as physically equivalent.

Let us now use the notations of Eqs. (15) and (21)–(25) and select h′u0
, one of the generators

of H′; let yu0 be the corresponding one-form vielbein defined through the Maurer–Cartan
one-formM (22). TheGL×GL(1,R)-invariant Einstein–Weyl structure may be rewritten —
using irreducible representations of H × GL(1,R)— in a block-diagonal form

(ds)2 = (dT )2 + h̃
u0
ij [T ]ẽi ẽj + h̃0[T ]yu0yu0 + h̃uv[T ]yuyv,

γ = Γu0 h̃0[T ]yu0 , u, v = 1, . . . , L′ − 1, i, j = 1, . . . , n− 1− L′, (48)

where

• Γu0 is an arbitrary real parameter;
• h̃0[T ] is an arbitrary positive function;
• h̃

u0
ij is a symmetric (n−1−L′)×(n−1−L′) 2-tensor, invariant under H̃ = H×GL(1,R),

h̃
u0
ij [T ]ei(x)ej (x) =

∑
η=irreps of H̃

h̃η[T ]ηije
i(x)ej (x),

• h̃uv is a symmetric (L′ − 1)× (L′ − 1) 2-tensor, invariant under GL(1,R),

h̃uv[T ]yu(x)yv(x) =
∑

ρ=irreps of GL(1,R)

h̃ρ[T ]ρuvy
u(x)yv(x),

• of course, the Einstein–Weyl equations (46) should also be imposed;
• yu0 satisfies the Maurer–Cartan consistency condition

dyu0 = − 1
2f

u0
vwy

v ∧ yw − 1
2f

u0
ij ẽi ∧ ẽj . (49)

3.2. Some families of solutions

To escape from the no-go theorem of Corollary 1, it may be tempting to consider a
non-semi-simple group G ≡ GL(1,R) × G̃ where (G̃/H) is an (n − 2)-dimensional
symmetric space: in that case (note that the unimodularity condition f

j
ij = 0 is trivially

satisfied) there are only two unknown functions of T : h̃0[T ] and the one that multiplies
the unique standard metric on (G̃/H). A particular situation in that family is one, with a
compact group G, considered by Madsen et al. [31,32] and analysed in Section 5 of the
present work: thereG ≡ S1×SO(n−1), H ≡ SO(n−2). A four-dimensional non-compact
example is the Bianchi VIII case [24] where (G̃/H) ≡ SU(1, 1)/U(1).
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Other situations with only two unknown functions of T in (48) occur when L′ = 1 and
G/(H × U(1)) is a compact irreducible symmetric space: this requires H′ = U(1) �
SO(2) � S1. Indeed, this ensures that the matrix hij[T ] depends on a single function
of T . 8 In that case, the subgroup H̃ contains an U(1) factor, and the symmetric space
G/H̃ is necessarily [44,45] a Kähler space whose Kähler form J is proportional to the
closed 2-form:

dyu0 (49)= − 1
2f

u0
ij ẽi ∧ ẽj = 2J. (50)

Let us explicitly prove that the Einstein–Weyl metrics in that family are Riemannian con-
formally Kähler metrics, so generalising our four-dimensional analysis [24]. The metric
(48) writes

(ds)2 = (dT )2 + h̃0(T )y
u0yu0 + 2h̃1(T )gij̄ dzi dz̄j̄ ,

and the Kähler form J ≡ igij̄ dzi ∧ dz̄j̄ . K(z, z̄) being the Kähler potential, the one-form

y0 writes

y0 = dU − i∂iK dzi + i∂j̄K dz̄j̄ ,

and in the basis dxm : {dT , dU, dzi, dz̄j̄ }, i, j̄ = 1, 2, . . . , 1
2 (n − 2), m = 1, 2, . . . , n,

the metric will be written (ds)2 = Gmp dxm dxp. Consider now the 2-form

Ω =
√
h̃0(T ) dT ∧ y0 + h̃1(T )J.

In the basis {dxm}, Ω = 1
2 J̄mp dxm ∧ dxp defines an antisymmetric 2-tensor J̄mp. The

tensor J̄ pm = J̄mqG
qp is found to be

J̄
p
m =




0
1√
h̃0

0 0

−
√
h̃0 0 0 0

i
√
h̃0∂iK −∂iK iI 0

−i
√
h̃0∂j̄K −∂j̄K 0 −iI,




(51)

and one verifies that J̄ pmJ̄
q
p = −δqm. With expression (51) for J̄ pm , one computes the Nijenhuis

tensor and finds it to be identically zero: we have a complex structure, and, thanks to the
antisymmetry of J̄mp, the metric Gmp is Hermitian with respect to J̄ . The differential dΩ
is computed and found to be

dΩ = dΦ

dT
dT ∧Ω with

dΦ

dT
= d log h̃1(T )

dT
− 2

√
h̃0(T )

h̃1(T )
,

8 The unimodularity condition decomposes into f
j
ij + f

u0
iu0
= 0, which is true (the indices i, j, k run among

(G −H−H′) generators), and f j

u0j
= 0 which results from the compactness of H ′.
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and, after the conformal transformation, compatible with the cohomogeneity-one property
(J̄ pm being unchanged)

g→ g̃ = g exp[−Φ(T )], Ω → Ω̃ = Ω exp[−Φ(T )],
γ → γ̃ = γ − dΦ(T ),

one gets dΩ̃ = 0. As a consequence, we have the following theorem.

Theorem 2. Given an arbitrary (n − 2)-dimensional compact symmetric Kähler space
G/H̃ [then H̃ ≡ U(1)×H ], any non-exact Einstein–Weyl structure of cohomogeneity-one
under the left-action of G has a Riemannian conformally Kähler metric and the principal
orbit is the coset space G/H.

Some remarks are in order:

• Note that we only used the cohomogeneity-one structure and the existence of an extra
Killing vector for Einstein–Weyl structures.

• The structures are not “locally conformal Kähler” ones in the sense of Vaisman [15,46]
as the complex structure is not covariantly constant with respect to the Weyl covariant
derivative Dγ̃ (this would require γ = dΦ(T )).

• A particular situation in that family is the one where, in even dimensions n = 2m, G =
SU(m), H = SU(m − 1), H ′ = U(1): it was considered by Madsen et al. [31,32] and
is analysed in Section 4 of the present work (G/H̃ ≡ CPm−1).

• Another one would be G = SO(m+ 1), H = SO(m− 1), H ′ = SO(2) [15], etc.

In other situations, the condition H ′ = GL(1,R), will be relaxed, e.g. in dimensions
n = 5+ 4p, with G/H ≡ SU(p + 2)/SU(p), H ′ = SU(2), etc.

We do not intend to give here a complete classification of (non-exact) Einstein–Weyl struc-
tures in an arbitrary dimension, but mainly to emphasise that the symmetry of Einstein–Weyl
solutions is bigger than that of the equations.

4. SU(m)-invariant structures

In n = 2m dimensions, the previous analysis shows that a non-exact Weyl structure of
cohomogeneity-one under SU(m) has, in a Gauduchon gauge, an extra U(1) invariance, so
extending previous results shown for n = 4 [47]. The Weyl structure (48) may be written
as

ds2 = (dT )2 + f 2(T )(y0)2 + h2(T )gB, γ = ±Γf 2(T )y0, (52)

where Γ is a constant positive parameter, gB is the standard Fubini-Study metric on
CPm−1 with Kähler form J , Ricci curvature = 2mgB and the one-form y0 is chosen
to satisfy dy0 = 2JB (50), i.e. η = 1 in the notations of [31]. (Note that Madsen’s
parameter η2 = k2 may be reabsorbed into the definition of σ : all his equations are
invariant under the change f 2 → f 2/k2, β → β/k such that f 2σ 2 and βσ are left
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unchanged.) Note that here dy0 	= 0, an exact Einstein–Weyl structure requires
Γ = 0.

4.1. Local expressions

The Einstein–Weyl equations (46) write [31,32]

Λ′ = −f
′′

f
− (n− 2)

h′′

h
− 1

2
Γ 2f 2,

c(00) : Λ′ = −f
′′

f
− (n− 2)

h′f ′

hf
+ (n− 2)

f 2

h4
+ n− 4

4
Γ 2f 2,

c(ij) : λ′ = −h
′′

h
− (n− 3)

h′2

h2
− h′f ′

hf
− 2

f 2

h4
+ n

h2
− 1

2
Γ 2f 2. (53)

To follow as closely as possible our previous four-dimensional analysis, 9 we rewrite gB as
1
4 (dτ)

2, JB as 1
4J, y

0 as 1
2σ

3, dσ 3 = J and Eq. (52) with notations inspired by gravitation
[48,49]:

ds2 =
[
ω2(t)ω3(t)(dt)

2 + ω2(t)

ω3(t)
(σ 3)2

]
+ ω3(t)(dτ)

2, γ = ±Γ ω2(t)

ω3(t)
σ 3. (54)

As in [24], define u(t) through

u(t) = 1

ω3ω2

(
dω3

dt
− ω2

)
. (55)

The difference of the first two equations (53), allows the calculation of the derivative of
u(t):

du

dt
= −1

2
ω2[Γ 2 + u2] < 0.

Then, one can change the variable t into u and compute

dω3

du
= −2

1+ uω3

Γ 2 + u2
,

which integrates to

ω3(u) = 2
k − u

Γ 2 + u2
. (56)

Defining

Ω2 = 1
4 (Γ

2 + u2)ω2, (57)

and using the Einstein–Weyl equations (53), one obtains a second-order linear differential

9 There, (dτ)2 = σ 2
1 + σ 2

2 , where σi , i = 1, 2, 3 are three SU(2) left-invariant one-forms satisfying dσi =
1
2 εijkσj ∧ σk .
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equation

d2Ω2

du2
−
[

2(m− 3)u

Γ 2 + u2
+ m− 4

k − u

]
dΩ2

du
−
[

3(m− 2)(Γ 2 + k2)

(k − u)2
+m

]
Ω2

Γ 2 + u2

= − m

Γ 2 + u2
. (58)

Excluding Einstein solutions (as well as exact Einstein–Weyl structures), we rescale u and
k according to u = Γ x, k = Γ κ , and get the following (Γ -independent) expression for
Ω2:

Ω2(x) = m

(
1+ x2

κ − x

)m−2

[l1(x
2 − 2κx − 1)+ Im[κ, x]− 2l2Im+1[κ, x]], (59)

where n ≥ 2:

In[κ, x]= (κ − x)n−2

2[1+ x2]n−2

+(x2 − 2κx − 1)

[
(n− 2)

∫ κ

x

(κ − y)n−3

2[1+ y2]n−1
dy + δn,2

2(1+ κ2)

]
. (60)

For further use, notice that the functions In[κ, x] may be expressed as

In[κ, x] = (x2 − 2κx − 1)Jn(κ, x) with

∂Jn(κ, x)

∂x

∣∣∣∣
κ

= (κ − x)n−1

(x2 − 2κx − 1)2[1+ x2]n−2
> 0. (61)

When x →−∞, the functions Jn(κ, x) become

J̃n(κ) = δn,2
1

2(1+ κ2)
+ (n− 2)

∫ κ

−∞
(κ − y)n−3

2[1+ y2]n−1
dy > 0, (62)

and one proves that

Jn(κ, x)− J̃n(κ) � 1

n(−x)n , x →−∞. (63)

The behaviour near κ is

Jn(κ, x) � − (κ − x)n

n(1+ κ2)n
, x → κ−. (64)

Then Jn(κ, x) is an increasing function from J̃n(κ) to+∞when x varies from−∞ to (κ−√
1+ κ2), and from−∞ to zero when x varies from (κ−√1+ κ2) to κ . As a consequence,

In(κ, x) is a continuous positive function between −∞ and κ where it vanishes. These
properties will be useful in the discussion of the regularity of the distance.

Eqs. (56) and (59) and

du

dt
= −2Ω2 (65)
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give the distance 10 and Weyl-form as functions of the new “proper time” x:

ds2 = 2

Γ

[
κ − x

Ω2(1+ x2)2
(dx)2 + Ω2

κ − x
(σ 3)2 + κ − x

(1+ x2)
(dτ)2

]
,

γ =± 2Ω2

κ − x
σ 3. (66)

Finally, the conformal scalar curvature is computed from (47) and (53)

SD = m2l2Γ − 2m(m− 2)Γ
Ω2

κ−x =
nΓ

4

[
nl2−2(n− 4)

Ω2

κ − x

]
≤ n2Γ l2

4
. (67)

If one looks for solutions with a constant conformal scalar curvature, Eq. (58) can only be
satisfied for m = 2 [33,43].

As discussed in Section 3.2 and Theorem 2, under the conformal transformation g̃ =
1
2Γ [1+ x2]g, the metric may be rewritten in the standard form (54) with

ω̃ =
√
Ω2(1+ x2), ω̃3 = κ − x,

the “proper time” t̃ being given by

dt̃ = − dx

Ω2(1+ x2)
.

Then,

dω̃3

dt̃
− ω̃2 = 0,

ensuring that the n-dimensional metric g̃ is Kähler with Kähler form given by

J̃ n = ω̃2 dt̃ ∧ σ 3 + ω̃3J, dσ 3 = J.

Then we have proved the following theorem.

Theorem 3. The most general 2m-dimensional (non-) compact non-exact Einstein–Weyl
structure with isometry SU(m), m ≥ 2, is a 3-parameter structure (plus one homothetic
parameter): the metric is locally conformally Kähler.

The conformal scalar curvature is a constant in the Gauduchon gauge if and only if n = 4
dimensions.

In the following section, we shall consider the possible positive definite and regular
U(m)-invariant Einstein–Weyl metrics. In his Ph.D., Madsen gives a classification of com-
pact solutions. Here, in the same spirit as in [25], we use the terminology of Gibbons and
Hawking [34,35] on nuts and bolts, well adapted to the analysis of the completeness of our
candidate metrics on orientable manifolds. We shall prove that, up to an arbitrary homothetic
factor Γ > 0, there exist m+ 2 one-parameter families of complete Einstein–Weyl metrics

10 Of course, the parameters κ, l1, l2 and the proper time x are constrained by positivity Ω2 > 0, κ − x > 0.
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with a non-exact Weyl form, each depending on a strictly positive constant l2 related to the
conformal scalar curvature.

4.2. Regular metrics

The function Ω2(x) has to be positive on the proper time interval, which is then limited
by its zeroes, and let us recall that positivity also requires x < κ . So, only four kinds of
proper time interval may occur: ]−∞, κ[, [−∞, x0[, ]x′0, κ[ and ]x′0, x0[.

The possible singularities of the distance (66) occur at−∞, κ or at a zero of the function
Ω2(x).

(a) Regularity of the distance as x →−∞. When x →−∞, Ω2(x) � mδ(−x)m where
δ = l1 + J̃m(κ)− 2l2J̃m+1(κ). The behaviour of the distance is readily seen to be singular
if δ 	= 0. Indeed,

ds2 ∼ 2

Γ

[
(dx)2

mδ(−x)(m+3)
+mδ(−x)m−1(σ 3)2 + 1

(−x)(dτ)
2
]
, (68)

and the change of variable ρ = (−x)−(m+1)/2 leaves a non-removable singularity at ρ = 0.
Consider now the special case when δ vanishes: thanks to (63), the function Ω2(x) goes

to 1 when x →−∞. So, the distance behaves as

ds2 ∼ 2

Γ

[
(dx)2

(−x)3 +
1

(−x) [(σ 3)2 + (dτ)2]

]
, (69)

and, after the change ρ = (−x)−1/2:

ds2 ∼ 8

Γ

[
(dρ)2 + ρ2

4
[(σ 3)2 + (dτ)2]

]
, ρ → 0,

the singularity is removable if one chooses Cartesian co-ordinates rather than polar ones.
Near the end point ρ → 0, the manifold is a point which gives a nut [34,35]. To sum up,
we have the following lemma.

Lemma 2. If the proper time interval extends down to−∞, the metric can be regular only
if δ ≡ l1 + J̃m(κ)− 2l2J̃m+1(κ) = 0, and then a nut occurs.

(b) Regularity of the distance at x = κ . Consider now the behaviour of the distance
near x = κ supposed to be the highest possible value of the proper time compatible with a
positive metric. AsΩ2(x) � m(1+κ2)m−1(−l1)(κ−x)−m+2, the behaviour of the distance
is readily seen to be singular if l1 	= 0. Indeed,

ds2 ∼ 2

Γ

[
(κ − x)m−1(dx)2

−ml1(1+κ2)(m+1)
−ml1

(
1+ κ2

κ − x

)m−1

(σ 3)2 + κ − x

1+κ2
(dτ)2

]
, (70)

and the change of variable ρ = (κ−x)(m+1)/2 leaves a non-removable singularity at ρ = 0.
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We are left with the case l1 = 0, where, thanks to (64), one finds

Ω2(x) � (κ − x)2

1+ κ2
.

One can change the variable x into ρ given by ρ = √κ − x and, here also, get the following
nut behaviour for the distance near x = κ:

ds2 ∼ 8

Γ [1+ κ2]

[
(dρ)2 + ρ2

4
[(σ 3)2 + (dτ)2]

]
, ρ → 0.

To sum up, we have the following lemma.

Lemma 3. If the proper time interval extends up to κ , the metric can be regular only if
l1 = 0, and then a nut occurs.

(c) Regularity of the distance at a zero of Ω2(x). At last, singularities in the distance
may occur at zeroes of Ω2(x). If Ω2(x0) = 0 with (dΩ2/dx)(x0) = 0 and x0 	= κ , the
differential equation (58) enforces x0 to be a maximum, which contradicts positivity.

So, consider the situation with (dΩ2/dx)(x0) 	= 0 and change the variable x to ρ ac-
cording to

x = x0 + ρ2 dΩ2

dx
(x0), (71)

using Ω2(x) � ρ2[(dΩ2/dx)(x0)]2, the distance behaves when ρ → 0 as

ds2 ∼ 8(κ − x0)

Γ [1+ x2
0 ]2


(dρ)2+ρ2

((
1+ x2

0

κ − x0

)
dΩ2

dx
(x0)

)2 (
σ 3

2

)2

+1+x2
0

4
(dτ)2


 ,

(72)

and one has the following lemma.

Lemma 4. If the function Ω2(x) vanishes at x0, the metric can be regular only if x0 is a
bolt of twist p, i.e.

Ω2(x0) = 0,

(
1+ x2

0

κ − x0

)
dΩ2

dx
(x0) = ±p, p = 1, 2, . . . . (73)

Indeed, in such a case, restricting the range in the angle ψ ∈ [0, 4π ] involved in σ 3 =
dψ+cos θ dφ, etc. to the interval [0, 4π/p], and changing from polar co-ordinates (ρ, ψ/2)
to Cartesian ones, there is no longer a singularity in the distance when ρ goes to zero. Near
the end point ρ → 0, the manifold is CPm−1. Moreover, the U(1) isometry corresponding
to changes in ψ becomes U(1)/Zp.

If (dΩ2/dx)(x0) > 0 the bolt is +p and the proper time interval extends to κ or to
another bolt−p at x1 > x0; on the other hand, the bolt at x0 is a −p one and the proper
time interval extends down to −∞ or to another bolt(+p) at x2 < x0.

Condition (73) may be rewritten as a relation between κ, l2 and x0 as

κ − x0 = (m± p)
1+ x2

0

2(∓px0 +ml2)
. (74)
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We have now all the building blocks needed in our discussion on the regularity of our
Einstein–Weyl metrics (note that the positive function ‖γ ‖2 = 2ΓΩ2(x)/(κ− x) vanishes
at both ends of the allowed proper time intervals).

4.2.1. Nut–nut metric
Consider firstly the situation where the allowed range of x be the largest one, ]−∞, κ].

According to Lemma 3, l1 = 0 for completeness at x = κ; moreover, a nut at−∞ requires
(Lemma 2)

l1 + J̃m(κ)− 2l2J̃m+1(κ) = 0.

Hopefully, for a given value of the parameter l2, the vanishing of fm(κ) ≡ J̃m(κ) −
2l2J̃m+1(κ), will determine a unique value for the parameter κ .

Notice firstly that, thanks to the positivity of the J̃n, the function fm(κ) can vanish only
when l2 > 0. After an integration by parts, fm(κ) may be rewritten as

fm(κ) = −(m− 1)
∫ κ

−∞
(y + l2)[κ − y]m−2

[1+ y2]m
dy. (75)

On one hand, this function cannot vanish if κ + l2 ≤ 0. On the other hand, after some
algebra, one obtains the differential equation

(m− 2)fm(κ)− (κ + l2)
dfm(κ)

dκ
= A > 0,

A = δm,2
(κ + l2)

2

(1+ κ2)2
+ (m− 1)(m− 2)

∫ κ

−∞
(y + l2)

2[κ − y]m−3

[1+ y2]m
dy. (76)

Then, as the vanishing of fm requires (κ + l2) > 0, the derivative of fm at any of its zeroes
has to be negative. As a consequence of the continuity of that function, there exists at most
one zero for fm.

Moreover, as the J̃n(κ) (62) are easily seen to satisfy the recursive relation

4(n− 2)J̃n+1(κ) = 2κ(2n− 3)J̃n(κ)+ (n− 1)J̃n−1(κ), n ≥ 3, (77)

their behaviour at infinity may be proven to be

J̃n(κ) � βnκ
n−3

(
1+O

(
1

κ2

))
, βn= π(2n− 5)!

[2n−2(n− 3)!]2
when κ →+∞, n ≥ 3,

and

J̃n(κ) � δn(−κ)−n
(

1+O
(

1

κ2

))
, δn = [(n− 1)!]2

(2n− 2)!
when κ →−∞, n ≥ 2.

As a consequence, fm(κ), positive for κ ≤ −l2 and going to −∞ when κ → +∞ has
one and only one zero: given a positive number l2, the value of the parameter κ > −l2 is
uniquely fixed (recall that l1 = 0) and determines, up to a homothety, one and only one
nut–nut metric.
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4.2.2. Nut–bolt(1) metric
Consider now the situation where the range of x is ] −∞, x0], Ω2(x0) = 0, x0 < κ .

Thanks to Lemma 2, the nut at −∞ requires

l1 + J̃m(κ)− 2l2J̃m+1(κ) = 0, (78)

and, from Lemma 4 and (74), we know that a bolt at x0 (necessarily a bolt(−1) in order to
be compatible with the nut at the other end) implies the two conditions

κ = x0 + (m− 1)
1+ x2

0

2(x0 + ml2)
,

l1(x
2
0 − 2κx0 − 1)+ Im[κ, x0]− 2l2Im+1[κ, x0] = 0. (79)

Hopefully, for a given value of the parameter l2, these equations will determine uniquely
the other ones (κ, l1) and fix the metric (66). From (78) and (79) one gets the condition

gm[κ, x0] ≡ [Jm(κ, x0)− J̃m(κ)]− 2l2[Jm+1(κ, x0)− J̃m+1(κ)] = 0. (80)

Thanks to the increasing character of the function Jn[κ, x] as a function of x < κ−√1+ κ2,
both square brackets in that equation are positive in that range for x. On the other hand,
when κ−√1+ κ2 < x ≤ κ , they are both negative. Then, the existence of a solution again
requires a strictly positive l2.

After an integration by parts, gm[κ, x0] may be rewritten as

gm[κ, x0] = (m− 1)
∫ x0

−∞
(y+l2)[κ − y]m−2

[1+ y2]m
dy + (m− 1)

2m(1+ x2
0 )

(
m− 1

2(x0+ml2)
)m−2

.

(81)

The Jn(κ, x) satisfy the following recursion relation (n ≥ 3):

4(n− 2)Jn+1(κ, x)= 2κ(2n− 3)Jn(κ, x)+ (n− 1)Jn−1(κ, x)

− (κ − x)n−1

(x2 − 2κx − 1)[1+ x2]n−2
, (82)

and the same is true for the, positive, square bracket [Jn(κ, x) − J̃n(κ)]. As κ and x0 are
related variables, and as from (79) κ − x0 > 0 needs x0 > −ml2, x0 → −ml+2 implies
κ →+∞, and the behaviour of [Jn(κ, x)− J̃n(κ)] at infinity may be shown to be

[Jn(κ, x)− J̃n(κ)] � γnκ
n−3

(
1+O

(
1

κ

))
for some positive γn > 0, n ≥ 2.

As a consequence, gm[κ, x0] � −2l2γm+1κ
m−2, goes to −∞ when x0 → −ml2, κ →

+∞. In the same manner, when x0 → +∞, i.e. κ � 1
2 (m+ 1)x0 → +∞, one can prove

that gm[κ, x0] � −2l2(−βm+1κ
m−2). Then it goes to +∞ when x0 →+∞, κ →+∞.

To sum up, gm(κ(x0), x0), varying continuously from −∞ to +∞ when x0 grows from
−ml2 to +∞, has at least one zero. We do not succeed in proving that the solution is
unique, but our previous results for n = 2m = 4 [25] and computer analysis of the function
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gm[κ(x0), x0] defined through Eqs. (79) and (81) made us confident on the fact that the
parameter κ > −l2 is uniquely fixed and, due to (78), so is l1. Finally, given a positive
parameter l2, there is one and only one nut–bolt Einstein–Weyl regular metric.

4.2.3. Bolt(1)–nut metric
Consider now the situation where the range of x is [x′0, κ], Ω2(x′0) = 0, x′0 < κ . From

Lemma 3, the nut at κ requires l1 = 0, and, from Lemma 4 and (74), we know that a bolt at
x′0 (necessarily a bolt(+1) in order to be compatible with the nut at the other end) implies
the two conditions

κ = x′0 + (m+ 1)
1+ x′20

2(−x′0 + ml2)
,

l1(x
′2
0 − 2κx′0 − 1)+ Im[κ, x′0]− 2l2Im+1[κ, x′0] = 0. (83)

The same manipulations as in the previous section lead to a similar function

g′m[κ, x′0]≡ [Jm(κ, x
′
0)− J̃m(κ)]− 2l2[Jm+1(κ, x

′
0)− J̃m+1(κ)]

=−(m−1)
∫ κ

x′0

(y+l2)[κ − y]m−2

[1+ y2]m
dy + (m+1)

2m(1+x′20 )

(
m+1

2(−x′0+ml2)

)m−2

.

(84)

With

x0 = −
(m− 1)x′0 + 2ml2

(m+ 1)
, (85)

κ(x′0) of Eq. (83) expressed as a function of x0, has exactly the same value as κ(x0) of (79).
Under the same change of variable, it is shown in Appendix B that the function g′m[κ, x′0]
becomes −gm[κ, x0] of the previous section (81). Then, except the different values of l1,
the metrics are the same (as discussed for m = 2 in [25], only the orientation of the
Einstein–Weyl manifold changes).

4.2.4. Bolt(p)–bolt(p) metric
Consider finally the situation where the range of x is [x′0, x0], Ω2(x0) = 0, Ω2(x′0) =

0, x′0 < x0 < κ . From Lemma 4 and (74), we know that a bolt(+p) at x′0 and a bolt(−p)
at x0 imply four relations between κ, x0, x

′
0, l1 and l2:

κ = x′0 + (m+ p)
1+ x′20

2(−px′0 + ml2)
= x0 + (m− p)

1+ x2
0

2(px0 + ml2)
,

l1(x
′2
0 − 2κx′0 − 1)+ Im[κ, x′0]− 2l2Im+1[κ, x′0] = 0,

l1(x
2
0 − 2κx0 − 1)+ Im[κ, x0]− 2l2Im+1[κ, x0] = 0. (86)

The first two equations, giving a second-order algebraic equation for x0, lead to two
solutions:

x0 = −
(m− p)x′0 + 2ml2

m+ p
, (87a)
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or

x0 =
ml2x′0 + p

−px′0 + ml2
. (87b)

The two others, after operations similar to the ones done in the two previous sections, lead
to the vanishing of a new function:

hm[x0, x
′
0]≡ [Jm(κ, x0)− Jm(κ, x

′
0)]− 2l2[Jm+1(κ, x0)− Jm+1(κ, x

′
0)]

= (m−1)
∫ x0

x′0

(y+l2)[κ − y]m−2

[1+ y2]m
dy + m−p

2m(1+x2
0 )

(
m− p

2(px0 + ml2)

)m−2

− m+ p

2m(1+ x′20 )

(
m+ p

2(−px′0 + ml2)

)m−2

. (88)

Of course, here also one finds no solution when l2 ≤ 0. We shall first prove that if p ≥ m,
there is no solution, second that for p < m relation (87b) is excluded.

• Case p = m. As x0 	= κ , Eq. (86) enforces x0 = −l2, and x′0 is related to κ by κ =
(l2x

′
0 + 1)/(l2 − x′0). The function hm[−l2, x′0] reduces itself to the sum of two strictly

negative terms (the quotient (m− p)/2(px0 +ml2) ≡ (κ − x0)/(1+ x2
0 ) = 1/(l2 − x′0)

being finite as x′0 < x0 = −l2). So there is no bolt(m)–bolt(m) Einstein–Weyl metric.
• Case p > m. One has x′0 < x0 < −ml2/p. This condition is readily seen to contradict

solution (87b) and one is left with solution (87a). Then, the positivity of x0 − x′0 =
−2m(x′0 + l2)/(p − m) enforces x′0 < −l2, and the relation x0 + l2 = ((p − m)/(p +
m))(x′0 + l2) also ensures that x0 < −l2. As a consequence, the function hm[x0, x

′
0]

reduces itself to the sum of three strictly negative terms and there are no bolt(p)–bolt(p)
Einstein–Weyl metric for p > m. Then we have the following lemma.

Lemma 5. Regular bolt–bolt Einstein–Weyl SU(m)-invariant metrics, non-conformally
Einstein, may exist only with a twist p < m.

Note that this was only conjectured in [47].

• Case p < m. Consider first the candidate solution (87b). Using relations (86) and some
identities

px0 + ml2
1+ x2

0

= −px′0 + ml2

1+ x′20
, 1+ x0x

′
0 = ml2

1+ x2
0

px0 + ml2
,

(κ − x0)+ (κ − x′0) = m
1+ x2

0

px0 + ml2
,

one may rewrite the function hm as

hm[x0, x
′
0] = −

(
m−1

m

)(
px0 + ml2

1+ x2
0

)∫ x0

x′0

(y − x′0)(x0−y)[κ−y]m−2

[1+y2]m
dy, (89)

whose negatively definite property ensures that there is no “solution (87b)” candidate.
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Then one is left withp < m and the linear relation (87a) x0 = −((m−p)x′0+2ml2)/(m+p)
between x0 and x′0. Some useful identities result from the previous relation:

0 < x0 − x′0 = −
2m

m+ p
(x′0 + l2) = 2m

m− p
(x0 + l2),

and imply

x0 > −l2 > −ml2
p

, x′0 < −l2 <
ml2
p

.

One then obtains the x′0 →−∞, x0 →+∞ limit of hm[x0, x
′
0] to be +∞:

hm[x0, x
′
0] � −2l2[−2βm+1(κ)

m−2], x′0 →−∞, x0 →+∞. (90)

With regards to the limit x′0 →−l2, x0 →−l2, one gets

hm[−l2,−l2] = − p

m(1+ l22)
2(2l2)m−2

< 0. (91)

Then there exists at least one zero of hm[x0(x
′
0), x

′
0]. We do not succeed in proving that the

solution is unique, but our previous results for n = 2m = 4 [25] and computer analysis of
the function hm[x0(x

′
0), x

′
0] defined through Eq. (88) made us confident that the parameter

κ > −l2 is uniquely fixed and, due to (86), so is l1. Finally, given a positive parameter l2,
there is one and only one bolt–bolt Einstein–Weyl regular metric, and we have the following
lemma.

Lemma 6. Regular bolt–bolt Einstein–Weyl SU(m)-invariant metrics, non-conformally
Einstein, exist for any twist p < m, and depend on a single positive parameter l2.

Note also that relation (87a) implies

κ − x0

1+ x2
0

= κ − x′0
1+ x′20

⇔ ω3[x0] = ω3[x′0]. (92)

4.3. Summary

In our Gauduchon gauge, we found m+ 2, and only m+ 2, families of non-conformally
Einstein regular Einstein–Weyl SU(m)-invariant metrics ; according to the classification
of Gibbons and Hawking, they are complete and live on a compact orientable manifold
without boundary.

The same analysis with two functions of T could have been done for any other (n −
2)-dimensional symmetric Kähler space with little changes, e.g. for the Grassmannian
SU(p + q)/(SU(p)× SU(q)× U(1)), with pq = 1

2 (n− 2).
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5. S1× SO(n− 1)-invariant structures

Cohomogeneity-one Weyl structures (48) with S1×SO(n−1) invariance may be written
in a Gauduchon gauge as (here, thanks to (49), dy0 = 0 ⇒ y0 = dθ) [31]

ds2 = (dT )2 + f 2(T )(dθ)2 + h2(T )gB, γ = ±Γf 2(T ) dθ, θ ∈ (0, 2π),

(93)

where gB is the standard metric on Sn−2 with Ricci curvature= (n− 3)gB. Note that an
exact structure exists iff f 2(T ) = constant.

5.1. Local expressions

The Einstein–Weyl equation (46) write [31,32]

Λ′ = −f
′′

f
− (n− 2)

h′′

h
− 1

2
Γ 2f 2,

c(00) : Λ′ = −f
′′

f
− (n− 2)

h′f ′

hf
+ n− 4

4
Γ 2f 2,

c(ij) : Λ′ = −h
′′

h
− (n− 3)

h′2

h2
− h′f ′

hf
+ n− 3

h2
− 1

2
Γ 2f 2. (94)

Note that an exact structure solution exists and writes

ds2 = 4f 2

Γ 2

[
(dt ′)2 + sin2t ′gB + Γ 2

4
(dθ)2

]
, γ = ±Γf 2 dθ,

the metric is the standard metric on S1 × Sn−1.
Here again, we rewrite (93) with notations inspired by gravitation [48,49]

ds2 =
[
ω2(t)ω3(t)(dt)

2 + ω2(t)

ω3(t)
(dθ)2

]
+ ω3(t)(dτ)

2, γ = ±Γ ω2(t)

ω3(t)
dθ, (95)

and define u(t) through

u(t) = 1

ω3ω2

dω3

dt
. (96)

The difference of the first two equations (94) allows the calculation of the derivative of u(t)
which is found to have the same expression as in Section 4.1:

du

dt
= −1

2
ω2[Γ 2 + u2] < 0.

Then, one can change the variable t into u and compute

dω3

du
= −2

uω3

Γ 2 + u2
,

which integrates to

ω3(u) = 2k

Γ 2 + u2
, k > 0 thanks to positivity. (97)
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Defining

Ω2 = 1
4 (Γ

2 + u2)ω2, (98)

and using the Einstein–Weyl equations (94), after a rescaling of u and k according to
u = Γ x, k = Γ κ , one obtains a second-order linear differential equation

(1+ x2)
d2Ω2

dx2
− (n− 6)x

dΩ2

dx
− 2(n− 3)[Ω2 − 1] = 0. (99)

It solves to

Ω2(x) = 1− l1x(1+ x2)(n−4)/2 − l2[1+ (n− 3)x(1+ x2)(n−4)/2Kn(x)], (100)

where (n ≥ 3)

Kn(x) =
∫ x

0

dy

(1+ y2)(n−2)/2
. (101)

For further use, notice that when x →±∞, the functions Kn(x) behave as (n ≥ 4)

Kn(x) � ±
[
an + 1

(n− 3)|x|n−3

]
, x →±∞, an = Γ [(n−3)/2]Γ [1/2]

2Γ [(n−2)/2]
. (102)

Eqs. (97) and (100) and

du

dt
= −2Ω2 (103)

give the distance 11 and Weyl-form as functions of the new “proper time” x:

ds2 = 2κ

Γ

[
(dx)2

Ω2(x)(1+ x2)2
+ Ω2(x)

κ2
(dθ)2 + (dτ)2

(1+ x2)

]
, γ = ±2Ω2(x)

κ
dθ.

(104)

For further reference, note that the positive parameter κ only appears in the combination
dθ/κ , and as a rescaling of the homothety parameter Γ .

The distance may be rewritten as a function of the angle Ψ ∈ [0, π ], cotΨ = x,

ds2 = 2κ

Γ

[
(dΨ )2

Ω2(Ψ )
+ Ω2(Ψ )

κ2
(dθ)2 + sin2Ψ (dτ)2

]
,

Ω2(Ψ ) = 1− l2 − cosΨ sin3−nΨ

[
l1 + (n− 3)l2

∫ π/2

Ψ

sinn−4φ dφ

]
. (105)

Notice that for n = 3, the differential equation (99) solves to Ω2 = 1 − l2 − l1 cosΨ , in
agreement with (105): Ω2(Ψ ) varies monotonically between 1 − l1 − l2 and 1 + l1 − l2,

then it has at most one zero.

11 Of course, the parameters κ, l1, l2 and the proper time x are constrained by positivity Ω2 > 0, κ > 0.
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Finally, the conformal scalar curvature is computed from (47) and (94):

SD = Γ

2κ
[nl2 + n(n− 4)(1−Ω2(x))] ≤ Γ

2κ
n(l2 + n− 4). (106)

Note that a constant conformal scalar curvature requires either n = 4 or Ω2(x) = 1.
This last case corresponds to an exact Weyl-form (note that in our local approach, a closed
Weyl-form is an exact one) and the metric (105) is the standard metric on S1 × Sn−1 [33].
Then, we have proved the following theorem. 12

Theorem 4. The most general (n ≥ 4)-dimensional (non-) compact non-exact Einstein–Weyl
structure with an S1× SO(n− 1)-invariant metric is a 3-parameter structure (plus one ho-
mothetic parameter).

The metric has a constant conformal curvature in the Gauduchon gauge if and only if
the dimension n = 4.

In the following section, we shall consider the possible positive definite and regular
S1 × SO(n− 1)-invariant Einstein–Weyl metrics, still with the tools of nuts and bolts. We
shall prove that, up to an arbitrary homothetic factor Γ > 0, there exist three one-parameter
families of complete Einstein–Weyl metrics with a non-exact Weyl form, depending on a
strictly positive constant l2 related to the conformal scalar curvature.

5.2. Regular metrics

The function Ω2(x) has to be positive on the proper time interval. The possible singular-
ities of the distance occur at x = ±∞, or at a zero of the function Ω2(x). The case n = 3,
which requires a special analysis as the candidates are not solely given by the ansatz (93)
[28], will not be considered in the following.

(a) Regularity of the distance as x → ±∞. When x → ±∞, Ω2(x) � −δ±n |x|n−3

where δ±n = l1 ± (n− 3)anl2. As above, the behaviour of the distance is readily seen to be
singular if δ±n 	= 0.

Consider now the special cases when δ±n vanishes: thanks to (102), the function Ω2(x)

goes to 1 when x →±∞. So, the distance behaves as

ds2 ∼ 2κ

Γ

[
(dx)2

(x)4
+ 1

κ2
(dθ)2 + 1

x2
(dτ)2

]
. (107)

Under the change ρ = 1/x:

ds2 � 2κ

Γ

[
(dρ)2 + ρ2(dτ)2 + 1

κ2
(dθ)2

]
, ρ → 0.

12 For n = 3, the ansatz (93) corresponds to the special case f = 0 of Tod’s general analysis on three-dimensional
Einstein–Weyl structures [28]: his four parameters (f, λ, B and C) may, respectively, be rewritten as f = 0, λ =
Γ, B = (1−l2)Γ/4κ andC = [(l1)2−(1−l2)2]/4κ2; his co-ordinates are, respectively,V =

√
2Ω2(x)/κΓ , t =

θ and (dy) =
√

8κ3/γ l21 (dτ).
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The singularity is removable if one changes to Cartesian co-ordinates in the (n − 1)-
dimensional space: near the end point ρ = 0, the manifold is a circle S1 which, gener-
alising Gibbons and Hawking terminology [34,35], we call a bolt(S1). To sum up, we have
the following lemma.

Lemma 7. If the proper time interval extends to ±∞, the metric can be regular only if
δ±n ≡ l1 + l2(n− 3)Kn(±∞) = 0, and then a bolt (S1) occurs.

A corollary is that the sole solution with ] −∞,+∞[ as proper time interval, requires
l1 = l2 = 0 i.e. Ω2(x) = 1 which leads to the metric on the Sn−1 sphere.

(b) Regularity of the distance at a zero ofΩ2(x). IfΩ2(x0) = 0 with (dΩ2/dx)(x0) = 0,
the differential equation (99) enforces x0 to be a maximum, which contradicts positivity.
Then, change the variable x to ρ according to

x = x0 + ρ2 dΩ2

dx
(x0), (108)

using Ω2(x) � ρ2[(dΩ2/dx)(x0)]2, the distance behaves when ρ → 0 as

ds2 � 8κ

Γ [1+ x2
0 ]2


(dρ)2 + ρ2

((
1+ x2

0

2κ

)
dΩ2

dx
(x0)

)2

(dθ)2 + 1+ x2
0

4
(dτ)2


 ,

ρ→ 0. (109)

If

(1+ x2
0 )

2κ

dΩ2

dx
(x0) = ±p, p = 1, 2, . . . ,

the singularity is removable if one changes to Cartesian co-ordinates in the two-dimensional
space (ρ, θ), and restricts the range in the angle θ to the interval [0, 2π/p]: near the end
point ρ = 0, the manifold is the sphere Sn−2 which gives a bolt [34,35]. As was previously
remarked, the integer p that “divide” the θ interval, may be reabsorbed into the definition
of the parameters κ and Γ : so, without loss of generality, we shall only consider p = 1.
To sum up, we have the following lemma.

Lemma 8. If the function Ω2(x) vanishes at x0, the metric can be regular only if x0 is a
bolt (Sn−2) of twist 1, i.e.

Ω2(x0) = 0,

(
1+ x2

0

2κ

)
dΩ2

dx
(x0) = ±1. (110)

If (dΩ2/dx)(x0) > 0 the bolt is (+1) and the proper time interval extends up to +∞
or to another bolt(−1) at x1 > x0; on the other situation, the bolt at x0 is a (−1) one
and the proper time interval extends down to −∞ or to another bolt(+1) at
x2 < x0.
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Condition (110) may be rewritten as a relation between κ, l2 and x0:

κ =



∓1− l2 + (n− 3)x2

0

2x0
if x0 	= 0,

(n− 3)an
2

if x0 = 0 ⇔ l2 = 1.

(111)

We have now all the building blocks needed in our discussion on the regularity of our
Einstein–Weyl metrics, according to the possible proper time intervals.

5.2.1. Bolt(S1)–bolt(S1) metric
Consider a situation where the allowed range of x is the largest one ]−∞,+∞[. Accord-

ing to Lemma 7, Ω2(x) = 1 and the Einstein–Weyl structure is an exact one, conformal to
the Einstein case S1 × Sn−1. Then we are not interested.

5.2.2. Bolt(Sn−2)–bolt(S1) metric
Consider now a situation where the allowed range of x is [x0,+∞[ with Ω2(x0) = 0.

Thanks to Lemma 7,

l1 = −(n− 3)anl2,

and, from Lemma 8 and (111), we know that a bolt(Sn−2) at x0 implies the two conditions

κ =



−1− l2 + (n− 3)x2

0

2x0
, x0 	= 0,

(n− 3)an
2

, x0 = 0 ⇔ l2 = 1,

and Ω2(x0) = 0, (112)

The derivative of Ω2 may be written as

dΩ2

dx
= (n− 3)l2[1+ (n− 3)x2](1+ x2)(n−6)/2G(x),

G(x) = − x

[1+ (n− 3)x2](1+ x2)(n−4)/2
+
∫ ∞

x

dy

(1+ y2)(n−2)/2
,

dG

dx
= − 2(1+ x2)

[1+ (n− 3)x2]2(1+ x2)(n−2)/2
< 0. (113)

G(x), decreasing from 2an to 0 between x = −∞ and+∞, is strictly positive (G(0) = an).
As a consequence, if l2 ≤ 0, Ω2(x) monotonically decreases from +∞ to 1 and cannot
vanish. On the contrary, if l2 > 0, Ω2(x) monotonically increases from −∞ to 1 and its
vanishing determines a unique value for the parameter x0.

Notice also that in the range [x0,+∞[,

0 ≤ Ω2(x) < 1 ⇒ l2
nΓ

2κ
≤ SD ≤ (l2 + (n− 4))

nΓ

2κ
, (114)

the conformal scalar curvature is a strictly positive function on the manifold, whatever the
dimension n ≥ 4, be, in agreement with a theorem of Calderbank for the compact case [33].
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To summarise, given a positive parameter l2, l1 and κ are fixed, and, up to an homothety,
there is one and only one Sn−2 − S1 Einstein–Weyl regular metric. Its scalar conformal
curvature is a strictly positive function on the manifold. The particular case l2 = 1 requires
x0 = 0, l1 = −(n− 3)an and κ = 1

2 (n− 3)an.

5.2.3. Bolt(S1)–bolt(Sn−2) metric
Consider now a situation where the allowed range of x is ]−∞, x′0] with Ω2(x′0) = 0.

The same discussion as in the previous section (Ω2(x) is unchanged when x → −x and
l1 →−l1) gives a unique solution for x′0 for any l2 > 0 (x′0 = −x0 of the previous section).
The other parameters are fixed:

l1 = (n− 3)anl2, κ = 1− l2 + (n− 3)x′20
2x′0

.

As G(x) of (113) is changed into G(x) − 2an which is <0, now Ω2(x) monotonically
decreases from 1 to 0. Here again, up to an homothety, there is one and only one S1−Sn−2

Einstein–Weyl regular metric, still with a positive scalar conformal curvature. The metrics
are the same, only the orientation of the Einstein–Weyl manifold changes. The particular
case l2 = 1 requires x0 = 0, l1 = (n− 3)an and κ = 1

2 (n− 3)an.

5.2.4. Bolt(Sn−2)–bolt(Sn−2) metric
Consider finally a situation where the allowed range of x is [x′0, x0]. From Lemma 8 and

(111), we know that a bolt(+1) at x′0 and a bolt(−1) at x0 imply four relations between
κ, x0, x

′
0, l1 and l2:

κ =−1− l2 + (n− 3)x′20
2x′0

= 1− l2 + (n− 3)x2
0

2x0
, l2 	= 1,

0=Ω2(x′0) = Ω2(x0). (115)

(The case l2 = 1 is excluded as the last two equations (115) imply: l1 + (n− 3)Kn(x
′
0) =

l1 + (n − 3)Kn(x0) = 0 which enforces x0 = x′0 = l1 = 0 which is forbidden!) The first
two equations lead to two possibilities:

x0 = −x′0, (116a)

or

x0x
′
0 =

l2 − 1

n− 3
. (116b)

Eliminating l1 between the two others leads to the vanishing of a new function

hn[x0, x
′
0] ≡ [αn(x0)− αn(x

′
0)]− (n− 3)

l2

1− l2
[Kn(x0)−Kn(x

′
0)] = 0,

with αn(x) = 1

x(1+ x2)(n−4)/2
. (117)
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The second square bracket in (117) is positive. The function αn is monotonically decreasing
in the two domains x < 0 and x > 0. So, if x0 and x′0 have the same sign, l2/(1− l2) has to
be negative; on the other case, the first square bracket in (117) is positive and l2/(1− l2) has
to be positive. Then, solution (116a) requires 0 < l2 < 1 and solution (116b) either l2 > 1,
the two zeroes of Ω2 being of the same sign, or 0 < l2 < 1 when they are of opposite sign.
In both cases, l2 ≤ 0 is excluded.

• Solution (116b). The derivative of the function hn[x0, x
′
0(x0)] is

dhn[x0, x
′
0(x0)]

dx0
= −

(
1

x2
0

+ n− 3

1− l2

)[
1

(1+ x2
0 )
(n−2)/2

− 1

(1+ x′20 )(n−2)/2

]
.

◦ l2 > 1: x0 and x′0 have the same sign (as (hn[x0, x
′
0(x0)] is an odd-parity function, we

may chose a positive sign), then x0 >
√
(l2 − 1)/(n− 3) and dhn[x0, x

′
0(x0)]/dx0 is

negative: as a consequence, hn[x0, x
′
0(x0)] decreasing from 0 when x0 =√

(l2 − 1)/(n− 3) to −∞ when x0 goes to +∞ does not vanish.
◦ 0 < l2 < 1: x0 positive, and hn[x0, x

′
0(x0)] has a minimum for x0 = −x′0 =√

(1− l2)/(n− 3) which is shown to be positive when l2 ∈]0, 1[, that also excludes
any solution to (117).
Then we are left with case (116a).

• Solution (116a). l1 = 0 results from the difference of the last two equations (115) with
x0 = −x′0. Moreover, with 0 < l2 < 1,

dhn[x0,−x0]

dx0
= −2

1− l2 + (n− 3)x2
0

(1− l2)x
2
0 (1+ x2

0 )
(n−2)/2

is negative and hn[x0,−x0], decreasing from +∞ to −2l2(n − 3)an/(1 − l2) when x0

goes from 0 to +∞, has a unique zero x0.

To sum up, given a positive parameter l2 < 1, there is one and only one bolt(+1)–bolt(−1)
Einstein–Weyl regular metric with l1 = 0 and κ = (1− l2 + (n− 3)x2

0 )/2x0.
Note also that relation (116a) implies

ω3[x0] = ω3[x′0]. (118)

Moreover, as now

dΩ2

dx
= (n− 3)l2[1+ (n− 3)x2](1+ x2)(n−6)/2[G(x)− an] (119)

decreases from an to −an,Ω2(x) has a single maximum between −x0 and x0, precisely at
x = 0 as G(0) = an. As a consequence

0 ≤ Ω2(x) ≤ (1− l2) < 1 ⇒ (n− 3)l2
nΓ

2κ
≤ SD ≤ (l2 + (n− 4))

nΓ

2κ
(120)

is positive on the manifold, whatever the dimension n ≥ 4.
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5.3. Summary

In our Gauduchon gauge, we found three, and only three, families of non-conformally
Einstein regular Einstein–Weyl metrics; according to the classification of Gibbons and
Hawking, they are complete and live on a compact manifold without boundary; moreover,
they have a positive conformal scalar curvature in agreement with the theorem of Calderbank
[33].

6. Concluding remarks

In this paper, we have first presented a local analysis of n-dimensional Einstein–Weyl
structures (g, γ ) corresponding to cohomogeneity-one metrics in a Gauduchon gauge. Sec-
ond, we have discussed with some details the explicit solutions in the case of an SU(m)
group of left-isometries and in the case of an S1 × SO(n− 1) group.

In the first part, we emphasised the role of the extra isometry exhibited by Tod, we
explicated its action for cohomogeneity-one structures, and we gave a necessary condition
for the existence of a non-exact Einstein–Weyl structure (Lemma 1); moreover, for a large
subclass, we proved that the metric is locally conformally Kähler (Theorem 2).

In the second part, we presented a complete local analysis of the two families, we showed
that they depend on three arbitrary parameters (plus one homothetic one), we gave the Kähler
form (for a conformally related metric) for the first case; then, in both cases, we analysed
the consequences of the completeness requirement and we obtained one-parameter families
of solutions (plus one homethetic parameter Γ > 0).

Let us finally compare our results with previous ones. Of course, they are not new when
compared to global mathematical approaches, but here we mainly required only local prop-
erties and so we obtained all the local solutions. We also used a language more relevant
for physicists and, as in the search for special solutions we found a simpler parameteri-
sation, we were able to prove the conjectures in [31] and to correct some mistakes in the
four-dimensional analysis of [32].

• As the analysis of Gibbons and Hawking in the language of bolts and nuts applies only
to orientable manifolds, it is not surprising that we missed metrics on non-orientable
manifolds such as RP4 or RP4#CP2, contrary to [31,32].

• There is a correspondence between nuts and bolts à la Gibbons and Hawking [34,35] and
special orbits in the language of mathematicians:
◦ a nut corresponds to special orbit being a point,
◦ a bolt(p) in n = 2m dimensions, corresponds to special orbit being CPm−1; the in-

teger p (p < m) means that the original (n − 1)-dimensional homogeneous space
SU(m)/SU(m − 1) has been restricted, through Einstein–Weyl constraints and regu-
larity requirements, to ((U(1)/Zp)× SU(m))/U(m− 1),

◦ a bolt(S1) corresponds to special orbit being a circle,
◦ a bolt(Sn−2) corresponds to special orbit being an (n− 2)-dimensional sphere.
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• Our nut–bolt families (Sections 4.2.2 and 4.2.3) correspond to the same manifold CPm

with both orientations: so the solutions are not really different solutions. The same remark
also holds for the bolt(S1)-bolt(Sn−2) solutions of Sections 5.2.2 and 5.2.3, the manifold
being Sn.

• Our bolt–bolt families (Sections 4.2.4 and 5.2.4) corresponds to Madsen’s ones [31, Sec-
tions 8.24 and 7.40], but we have been able to prove that for structures of cohomogeneity-
one under SU(m), no bolt(p)–bolt(p) exists with p ≥ m (Lemma 5), a result which was
only conjectured. Moreover, thanks to our parameterisation that disentangles the param-
eters κ, x0 and x′0 into a single transcendental equation for only one unknown parameter,
we also proved that the relation conjectured in Madsen’s thesis dissertation (the “time
parameter” in these analyses being an angle ϕ) : Φ1 +Φ2 = π ⇔ h2(T0) = h2(T ′0)⇔
ω3(x0) = ω3(x

′
0) (cf. (92) and (118)), is indeed the sole solution, for any n ≥ 4.
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Appendix A. Cohomogeneity-one geometry

The n-dimensional distance being split into

ds2 = (dT )2 + hij[T ]eiej = (dT )2 + gαβ dxα dxβ,

and using the quantities Kj
i given in (26), the Christoffel connection components are ex-

pressed as

2Γ α
0β = Eα

i e
j
βK

i
j , 2Γ 0

αβ = −eiαejβKij,

2Γ α
βγ = gαδ[gδβ,γ + gδγ,β − gβγ,δ], the other components vanishing,

with gαβgβγ = δαγ , Eα
i e

j
α = δ

j
i , Eα

i e
i
β = δαβ . (A.1)

The covariant derivative of the vielbeins eiα is readily computed:

∇βeiα = ∂βe
i
α − Γ

γ
βαe

i
γ = ∂βe

i
α − 1

2h
ilhmnE

γ

l [∂β(e
m
α e

n
γ )+ ∂α(e

m
β e

n
γ )− ∂γ (e

m
α e

n
β)],

(A.2)

which, using (17a), (17b) and (19), reduces to

∇βeiα = −[ 1
2f

i
jke

j
β + f i

akω
a
β ]ekα + hijhk(lf

k
n)j e

l
αe

n
β. (A.3)

A related result is

∇αEα
i = f k

ki + ωaβE
β
k f

k
ai. (A.4)
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With (A.1), the n-dimensional Ricci tensor is expressed in function of the tensor hij[T ], its
derivative Kij and the (n− 1)-dimensional Ricci tensor (26). The expression

2R(∇)
0α = ∇β(eiαEβ

j K
j
i )− ∇α(eiβEβ

j K
j
i )

simplifies to

K
j
i [T ]∇β(eiαEβ

j ),

which, using (17a), (17b) and (A.3), reduces to

2R(∇)
0α = eiα[Kj

i f
k
kj +K

j
k f

k
ij ]. (A.5)

A.1. The Bianchi identity

The ν = 0 component of the Bianchi identity 2∇µR(∇)µ
ν = ∇νR(∇) is split according to

µ = (0, α). Using (26), (A.2) and

R(∇) = R(n−1) + 2R(∇)
00 − 1

4

(
h′

h

)2

+ 1

4
KijK

ij,

one obtains

2∇µR(∇)µ
0 = ∇0R

(∇) − hij
dR(n−1)

ij

dT
+ 2∇(n−1)

α R
(∇)α
0 .

As a consequence

hij
dR(n−1)

ij

dT
= 2[∇αEα

k ]Ri
0,

where, with (A.5),

2Ri
0 = 2hijEα

j R
(∇)
0α = K jif k

kj +K
j
k h

ilf k
lj .

Appendix B. Bolt–nut versus nut–bolt

The relation (87a)) whose particular case is (85) implies

x0 + x′0
1− x0x

′
0
= −1

κ

(κ being related to x0 and x′0 through (87a) and (87b)). With

φ0 = tan−1(x0), φ′0 = tan−1(x′0), ψ = tan−1(κ),

φ0, φ
′
0 ∈]− π/2,+π/2[, ψ ∈]φ0,+π/2[,

this relation writes

ψ − φ0 = π

2
+ φ′0. (B.1)
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The following identity

Hn(κ, x0) ≡
∫ x0

−∞
[κ − y]n−1

(1+ y2)n
dy =

∫ κ

x′0

[κ − z]n−1

(1+ z2)n
dz ≡ H̃n(κ, x

′
0) (B.2)

is proven after the change of integration variables: y = tan(Φ), z = tan(ψ − π/2 − Φ).
Note that the same manipulations give no information on the similar integral between x0

and x′0.
The function gm[κ, x0] of (81) may be expressed as

gm[κ, x0]= 2m
κ + l2

1+ κ2
Hm+1(κ, x0)−

[
m− 1+ mκ(κ + l2)

1+ κ2

]
Hm(κ, x0)

+ (κ − x0)
m−2

2m(1+ x2
0 )
m−1

[
m− 1− 2m(κ + l2)(κ − x0)(1+ κx0)

(1+ κ2)(1+ x2
0 )

]
. (B.3)

In the same manner, the function g′m[κ, x′0] of (84) may be expressed as

g′m[κ, x′0]= 2m
κ + l2

1+ κ2
H̃m+1(κ, x

′
0)−

[
m− 1+ mκ(κ + l2)

1+ κ2

]
H̃m(κ, x

′
0)

− (κ − x′0)
m−2

2m(1+ x′20 )m−1

[
m+ 1− 2m(κ + l2)(κ − x′0)(1+ κx′0)

(1+ κ2)(1+ x′20 )

]
. (B.4)

So, using the identity

κ − x0

1+ x2
0

= κ − x′0
1+ x′20

resulting from (85), one gets

gm[κ, x0]+ g′m[κ, x′0] = 0.
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